Differential Geometry

Homework 2

Mandatory Exercise 1. (10 points)

Let M, N and P be smooth manifolds.

- (a) Consider the identity map $f: M \to M$. Show that $df: TM \to TM$ is also the identity map.
- (b) Let $f: M \to N$ and $g: N \to P$ be two differentiable maps. Show that $g \circ f: M \to P$ is also differentiable and that

$$(d(g \circ f))_p = (dg)_{f(p)} \circ (df)_p,$$

holds for all $p \in M$.

(c) If $f: M \to N$ is a diffeomorphism, then $df: TM \to TN$ is also bijective with inverse map given by $d(f^{-1})$.

Mandatory Exercise 2. (10 points)

- (a) Give an example of an embedding. And an example of an immersion which is not an embedding.
- (b) Show that locally any immersion is an embedding, i.e. if $f: M \to N$ is an immersion and $p \in M$, then there exists an open neighborhood W of p in M such that $f|_W$ is an embedding.
- (c) Let $f: M \to N$ an injective immersion. Show that if M is compact then f(M) is a submanifold of N. Give an counterexample for this fact if M is not compact.

Suggested Exercise 1. (0 points)

Consider the two atlases $A_1 = \{(\mathbb{R}, \varphi_1)\}$ and $A_2 = \{(\mathbb{R}, \varphi_2)\}$ on \mathbb{R} given by $\varphi_1(x) = x$ and $\varphi_2(x) = x^3$.

- (a) Show that $\varphi_2^{-1} \circ \varphi_1$ is not differentiable and conclude that the two atlases are not equivalent.
- (b) The identity map id: $\{(\mathbb{R}, \varphi_1)\} \to \{(\mathbb{R}, \varphi_2)\}$ is not a diffeomorphism.
- (c) The map $f: \{(\mathbb{R}, \varphi_1)\} \to \{(\mathbb{R}, \varphi_2)\}$ given by $f(x) = x^3$ is a diffeomorphism. Conclude that the two differentiable structures are diffeomorphic.

Suggested Exercise 2. (0 points)

Let $\{(U_{\alpha}, \varphi_{\alpha})\}$ be a differentiable structure on M and consider the maps

$$\Phi_{\alpha} \colon U_{\alpha} \times \mathbb{R}^{n} \longrightarrow TM$$
$$(x, v) \longmapsto (d\varphi_{\alpha})_{x}(v) \in T_{\varphi_{\alpha}(x)}M.$$

- (a) Show that the family $\{(U_{\alpha} \times \mathbb{R}^n, \Phi_{\alpha})\}$ defines a differentiable structure for TM.
- (b) Conclude that TM carries the structure of a differentiable manifold. What dimension has TM?
- (c) If $f: M \to N$ is differentiable, then $df: TM \to TN$ is also differentiable.

Suggested Exercise 3. (0 points)

Let M be an n-dimensional differentiable manifold and $p \in M$. Show that the following set can be canonically identified with T_pM (and therefore constitute an alternative geometric definition of the tangent space):

 $C_p/_{\sim}$, where C_p is the set of differentiable curves $c: I \to M$ such that c(0) = p and \sim is the equivalence relation defined by

$$c_1 \sim c_2 : \Leftrightarrow \frac{d}{dt} (\varphi^{-1} \circ c_1)(0) = \frac{d}{dt} (\varphi^{-1} \circ c_2)(0)$$

for some parametrization $\varphi \colon U \to M$ of a neighborhood of p.

Suggested Exercise 4. (0 points)

- (a) Show that the definition of a differentiable map does not depend on the choice of the parametrizations.
- (b) A differentiable map is also continuous.

Suggested Exercise 5. (0 points)

The **connected sum** of two topological n-manifolds M and N is the topological manifold M # N obtained by deleting an open set homeomorphic to a ball on each manifold and gluing the resulting boundaries together by a homeomorphism.

- (a) Give examples of this construction.
- (b) Show that M#N is again a topological manifold.
- (c) Show that $M \# S^n$ is homeomorphic to M.
- (d) Show that $T^2 \# \mathbb{R}P^2$ is homeomorphic to $\mathbb{R}P^2 \# \mathbb{R}P^2 \# \mathbb{R}P^2$.
- (e) Is the connected sum of two orientable manifolds again orientable?

Hand in: Monday April 25th in the exercise session in Seminar room 2, MI